A Bayesian approach to quantifying uncertainty from experimental noise in DEER spectroscopy.
نویسندگان
چکیده
Double Electron-Electron Resonance (DEER) spectroscopy is a solid-state pulse Electron Paramagnetic Resonance (EPR) experiment that measures distances between unpaired electrons, most commonly between protein-bound spin labels separated by 1.5-8nm. From the experimental data, a distance distribution P(r) is extracted using Tikhonov regularization. The disadvantage of this method is that it does not directly provide error bars for the resulting P(r), rendering correct interpretation difficult. Here we introduce a Bayesian statistical approach that quantifies uncertainty in P(r) arising from noise and numerical regularization. This method provides credible intervals (error bars) of P(r) at each r. This allows practitioners to answer whether or not small features are significant, whether or not apparent shoulders are significant, and whether or not two distance distributions are significantly different from each other. In addition, the method quantifies uncertainty in the regularization parameter.
منابع مشابه
Uncertainty analysis in matched-field geoacoustic inversions.
Quantifying uncertainty for parameter estimates obtained from matched-field geoacoustic inversions using a Bayesian approach requires estimation of the uncertainties in the data due to ambient noise as well as modeling errors. In this study, the variance parameter of the Gaussian error model, hereafter called error variance, is assumed to describe the data uncertainty. In practice, this paramet...
متن کاملA Bayesian approach for image denoising in MRI
Magnetic Resonance Imaging (MRI) is a notable medical imaging technique that is based on Nuclear Magnetic Resonance (NMR). MRI is a safe imaging method with high contrast between soft tissues, which made it the most popular imaging technique in clinical applications. MR Imagechr('39')s visual quality plays a vital role in medical diagnostics that can be severely corrupted by existing noise duri...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملFactors Affecting Energy Intensity in Provinces of Iran: Bayesian Averaging Approach
The identification of the most important factors affecting energy intensity with the aim of controlling and managing energy consumption is an important topic. Findings of different empirical studies on the factors affecting energy intensity are inconsistent and this raises uncertainty about the employed models. One of the techniques that conform to these uncertainty conditions of the model is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of magnetic resonance
دوره 270 شماره
صفحات -
تاریخ انتشار 2016